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BRIEF ABSTRACT

One of the prime difficulties in developing two dimensional dynamic

elastic plate theories from the three dimensional equations of elasticity is

the choice of functional dependence on the thickness coordinate.

This difficulty may be circumvented by formulating the problem first as a

boundary integral equation; then the dependence on the independent variable

through the plate thickness follows form as a direct quadrature with no

assumptions of functional form required.

In particular, the examination of separate symmetric and antieymetric

*modes allows the boundary integral equation to be written with unknowns

evaluated on a single surface. Acec.-ioj
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Consider an infinite elastic plate of thickness h. The dispersion

equation for elastic vibrations of such a plate is well known, e.g. Ewing,

Jardetsky and Press (1957). The first step in this research is to duplicate

such a dispersion equation by means of a boundary integral equation approach.

The purpose of this development is not to demonstrate an alternative

derivation procedure (in fact, this approach would appear clumsy compared to

the classical one), but rather to illustrate an approach which may have much

wider application. In particular, the boundary integral equation method

allows solution of the exact, three dimensional equations of linear elasticity,

but on two dimensional surfaces. This accomplishes the primary goal of plate

theory, i.e. the reduction of the dimensionality of the governing equations,

without paying the corresponding price of a physical approximation.

Furthermore, if approximations are made based on the physical property that

the plate thickness is small compared to the wave lengths involved, their

effect can be followed directly in the governing integral equations which

may themselves be solved through an expansion in orders of plate thickness.

Define the upper and lower surfaces, at y - +h/2 and -h/2

respectively, as SU and SLe These shall be taken to be stress free.

The problem may be treated as two dimensional in that waves are taken to

propagate only in one horizontal direction (x) with no dependence on the

second horizontal direction (z normal to x and y). This allows the

introduction of two scalar displacement potentials, * and 4., e.g.

x x y

uy y x
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These displacement potentials both satisfy wave equations. Assuming

time harmonic dependence exp (-iwt), these equations are then Helmholtz

equations,

V2 + *2 - 0

V2* + k2  _ - 0
T

where the dilatational and transverse wave numbers, k and kT, are

WAv(X + 2)/P and w/Vu"7T respectively with Lam constants A and u.

The stresses are related to the displacement potentials by

03i M [ Oxx + 4'yyI + 2u[E*xx + *.XY)

a yy A[,,Xx + S,yy] + 2u[*,yy - *IXY]

Oxy M u[2fvxy + *"yy - *'x

Boundary conditions for stress free surfaces at constant y require axy

and ayy to be zero or

09 +, +k 2 0/2
xy xx T

xy T xx

The governing two dimensional Helmholtz equation may be rewritten as

an integral (Weber) equation, e.g. Sneddon (1957) by use of Green's theorem

and a fundmental solution. (Alternative formulations are available which

treat stress directly rather than through a displacement potential, e.g.

Cruse and Rizzo (1968)). For an infinite elastic plate, the Weber equatioe'

are1

I '!1 o"" 1'(4dE# 0)ro a n H- H (k DR) B -i-. dS o
f [1 o 0

fi', n 0 HH'(kR 0 HOkT) a-t0dS 0|S
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where S represents both the upper and lower surfaces,, S(y +h/2).

SL(y -h/2). no is the outward (from the solid) normal to these surfaces,

is a field point, o is an integration variable, R is the distance between

r and r and e is (0, 1/2, 1) depending on whether r is exterior to, on the

surface of, or interior to the elastic body respectively. When r is allowed

to approach either surface, these equations reduce the dimensionality of the

problem, i.e. they involve only surface values of the dependent variables.

The variation of these variables through the thickness of the plate is

prescribed by using the same equations with the field point interior to the

plate; here, however, once the surface values have been obtained by their own

system of equations, the interior values are found through a direct

quadrature.

Two basic forms of motion are possible; the symmetric form in which

U +* *U S -*L and the antisymmetric form in which and

where U, L refer to upper and lower surfaces respectively. A periodic

dependence on x in the form exp. (iKx) will be assumed; this form could also

be obtained through the integral equations.

Consider the field point to lie on the upper surface. By symmetry,

only # and * values on this surface are required for the complete problem.

Define

*(x,h/2) - *u(x) - # L(x) - A exp (iKx)

#(x,h/2) - *u(X) - ;.L(X) - B exp (iix)

(x,h/2) - - (x) C exp (iKX)
yx) ( exp

A=xh2)-a (x) - "± (x) =D exp (ix)

I ~~ ~ 3 aI Ia-yIII i , .... ~,..
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where the two signs refer to symmetric and antisyimetric modes respectively,

and the two subscripts U and L refer to uppper and lover surfaces

respectively.

The equation then becomes

(l/2)#u(X) - (114) H [ ) U d o
L/41)0 

Jyo y - h/2

(+ (l/4i) f"U (X0)
+ 1/1) H ay

x, H . ,)(k )]]d Rb/ d x

with a similar equation on 4i with kT replacing kD and the signs on the lower

surface integral reversed. Here RU - x - ( RL.- [[x - ) + h)/

and % - x; where aRu/ y vanishes on the upper surface..

The boundary conditions provide

Ca- iKB 1 ~ 12 hc)B

D -- "A + fi k2/2K)A

Then

(1/2)A exp (iiKX) -(1/41) FC ep icx)Ho) [DRU)] dx3o
[ry - 0 h/2

y - h/2 -- y

and

(1/2)B exp(iex) - (1 ) -D exp i o  () d

0 %:t:(l/41)f LB h H()JI1) 4 b/2 D yo
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These can be shifted to F= - x, thus removing the x dependence from the

left hand side of the equation. These are clearly Fourier Transforms and may

be evaluated using the Bateman tables, Erdelyi, et al. (1954), e.g.:

k Jexp (iKC)H(l) (k C 2)dd

- 2J COS(Kc&)H M1 )( 2)d&
00

2 (k2 - 1(2)-1/2; 
0 

< < ki(X2 - k2)- 1/2 - k k <

fexp(i c)H(l)(k( [2 + h2] 1 1/2)d

. 2 cos (K)H (1)(k[2 + h211/2)d 2

- 1(221/2 exp[ih(k2 - K2)1/2]; 0 k

- i( 2 -h(1/2 exp-h(k 2 - k2)1/2; k < K

f(kh)exp(ic0)jl) (k[&2 + h2]1/2)-(&2 + h2)-1/2 d&

2 f(-kh)cos(1(&)H l(kf&2 + h2]l/ 2 )s(C 2 + h2)-1/2 dC

2 iexp [ih(k 2  K 12)1/2]; 0 < K k

I+1. exp I-h(c 2
-k2)1/21; k <c K <



I
There are four homogeneous equations on the four unknown

coefficients which then must define a dispersion relationship.

[ 2 - K2)1 2} [ih"k - K21] 1
L (-i(K2 - kj)Vl' 2 I+eP Eh(I2 - k~

C2- { N - K2)-1/2 exp[ih(q. - K2)1/J 0 < K < C

' , i , .- )- 1 ,2 , e [ f[ 2  - k ) 1/2] kD < K < -

(l--)B - {J- K,2)/1/

(1 / 2 ) B (1 4 1 -2 k T , t h e r e- r e t r e d s n t r e i s of o u T

i(2- kT) II+exp [-h lC2 - kT2) ii/2j

2- 1/2~I exp~ih[kT2 - K212" 0 < i < k T

2D71[ 2 2)1/2 e r(-[ 2  - 4)2/2] kT<K <

c- iKc ik2 /2K]JB

D s[ie - iq~/2iK]A

Since k D k T' there are three distinct regions of solution:

I : 0O<K <k D <kT

II : O'<IcD <K <kT

111: 0O<kD<kT <K

in addition to the two basic modes (syizutric and antisymmetric). Only case

* (111) will be considered since only long waves are anticipated. Consider the

case (111) - symetric: the governing equations lead directly to the well-

known dispersion equation, for general'elastic, e.g. Ewing, Jardetsky and

Press 6-12 (1957), with v2 . -2 c and V'2 = KC2  kI2
To
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tanh [hv'/2] 4vv' K
2

tanh [hv/21 (KZ + v 2)2

For h very small, this reduces to

(1 - /2) (K /2) -l

which is the well-known elastic plate dispersion equation, e.g. Ewing,

Jardetsky and Press, 6-16, (1957).

Case III - antisymmetric follows in much the same way, resulting in the

dispersion equation

tanh [hv/21 4vv' 2

tanh [hv'/2] (K2 + v,2)2

as found as equation 6-11 in Ewing, Jardetsky and Press (1957).

Interior values of # and * can be found once the surface values are

known (at least to within a constant multiplier). Placing the field point at

(x,y) where -h/2 < y < +h/2 yields

_.[,x (1)

*(x.,y) (1/41) H o o >,(kRU)

H(l) ,RU) ' U (xo)
0~ ~ Y [k Dh12

I"Y -h/2

+ #U x )-- H (1) [kDRL) ± H (1) [kDR) [-xo)jd x:

and a similar equation on *. Using slight modifications of the previous

Fourier transforms leads directly to interior values, e.g. the symmetric

solution for * for case III is



*(x~y) --exp(icx) * XP[-h(IC2 -kj 1)/2 2)

- k,~)1/J . {coh [y (K2 )/]

which again agrees with equation 6-13 of Ewing, Jardetaky and Press.



-10-

REFERENCES

Cruse, T. and F. Rizzo; "A Direct Formulation and Numerical Solution of the
General Transient Elastrodynamic Problem," Jour. Math. Anal. App. Vol. 22,
pp. 341 - 355, 1968.

Erdelyi, A., et al.; Bateman Manuscript Project. Tables of Intesral Transforms,
Vol. 1, McGraw Hill, 1954.

Ewing, M., W. Jardetsky and F. Press; Elastic Waves in Layered Media,
McGraw Hill, 1957

Snieddon, 14; Elements of Partial Differential Equations, McGraw Hill, 1957.



- -.-.. - . ..

S.CURITY CLASSIFItATI)OH OF I HIS rlltlen flo', Flmtnelhll

REPORT I OC~U(''TIOI P~AGE READ INSTRucIoiisR E ', C C U 'A -N A T 0 1 A G FFO Ir EC O L E,:T IN C FO R M .

1. REPORT NUMBER A3. RECIPIENT'S CATALOG NUMBER-- 2. ?OVT ACCESSION NO.

109 A Ao 0
4. TITLt (and Subitle) a F-1.-u., a / re .11g00 O

Elastic Plate Vibrations by Boundary Integral Technical
Equationst Pr 6. PERFOMING ORG. REPORT NUMBER

109

7. AUTHOR(*) a . CONTRACT OR GRANT NUMBER(sJ

R.P. Sha N00014-71-CI08\

9. PERFORMING ORGANIZATION NAME AND ABORESS 10. PHOGRAM EL.MENT. PROJECT. TASK,

AREA aWO.IK UNIT N'1
Dept. of Eng. Science /

SUNY at Buffalo .. )N Q/ I) / ~'~'' "
Buffalo, NY 14214 _ ,___ _--- --

It. CONTROLLING OFFICE NAME AND ADDRESS - 12.

Office of Naval Research--
Structural Mechanics 1 0UEROPAS

-r4- MONITORING AGENCY NAME A ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (ofWi I-repor

Unclassified

I|Sa. DECL ASSI FI C ATION/DOWNGRADING
SCHEDULE

16. DISTRIB3UTION S'I ATEMENT (of this Report)

Approvied for Public Release
Distribution is unlimited.

17. OISTRIOITION STATEMENT (of the abstract entered In Block 20, If dlflerent from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse alde if neceeev and identify by block number)

Elastic Plate Dynamics, Boundary Integral Equations

20. ABSTRACT (Continue on reveee side It nec@e.uV end identify by blych nil)0er

One of the prime difficulties in developing two dimensional dynamic elastic

plate theories from the three dimensional equations of elasticity is the
choice of functional dependence on the thickness coordinate. This difficulty
may be circumvented by formulating the problem first as a boundary integral
equation; then the dependence on the independent variable through the plate
thickness follows form as a direct quadrature with no assumptions of
functional form required. (turn over)

DD , o 1473 cOITION Of ' NOV 0s iS OnSOLETa
S,N 0102. LF- 014- 6601 SECURITY CL.ASSIFICATION Of T1IS PAG Dten eawme

__ _ _ _ O - (



V,

In particular, the examination of separate symmetric and antisymmetric modes
allows the boundary integral equation to be written with unknowns evaluated
on a single surface.
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